Komputasi dan Paralel Processing


A. Komputasi

Sebagian besar manusia di dunia mengetahui apa itu komputer, komputer berbeda dengan komputasi. Jadi, komputasi merupakan suatu cara untuk menemukan pemecahan permasalahan dari data input dengan suatu algoritma.
Pengertian Komputasi adalah proses menghitung, membandingkan dan berbagai operasi perhitungan matematika dan logika yang bertujuan untuk menyelesaikan suatu masalah yang dikerjakan dengan program komputer yang sudah disusun sesuai dengan Algoritma yang benar.
Kelebihan dari proses perhitungan komputasi yaitu bisa mendapatkan suatu hasil laporan dengan cepat dan akurat. Karena kita tinggal menginput data ke komputer, maka sistem yang telah dibuat tadi akan bekerja dan mengolah data kita menjadi informasi yang lebih berguna.

B. Komputasi Paralel

Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer independen secara bersamaan. Ini umumnya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar (di industri keuangan, bioinformatika, dll) ataupun karena tuntutan proses komputasi yang banyak. Kasus kedua umum ditemui di kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimia komputasi) dll.
Untuk melakukan berbagai jenis komputasi paralel diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk digunakan perangkat lunak pendukung yang biasa disebut middleware yang berperan mengatur distribusi antar titik dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. Salah satu middleware yang asli dikembangkan di Indonesia adalah OpenPC yang dipelopori oleh GFTK LIPI dan diimplementasikan di LIPI Public Center.
Pemrograman Paralel sendiri adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan. Bila komputer yang digunakan secara bersamaan tersebut dilakukan oleh komputer-komputer terpisah yang terhubung dalam satu jaringan komputer, biasanya disebut sistem terdistribusi. Bahasa pemrograman yang populer digunakan dalam pemrograman paralel adalah MPI (Message Passing Interface) dan PVM (Parallel Virtual Machine).
Yang perlu diingat adalah komputasi paralel berbeda dengan multitasking. Pengertian multitasking adalah komputer dengan processor tunggal mengeksekusi beberapa tugas secara bersamaan. Walaupun beberapa orang yang bergelut di bidang sistem operasi beranggapan bahwa komputer tunggal tidak bisa melakukan beberapa pekerjaan sekaligus, melainkan proses penjadwalan yang berlakukan pada sistem operasi membuat komputer seperti mengerjakan tugas secara bersamaan. Sedangkan komputasi paralel sudah dijelaskan sebelumnya, bahwa komputasi paralel menggunakan beberapa processor atau komputer. Selain itu komputasi paralel tidak menggunakan arsitektur Von Neumann.
Untuk lebih memperjelas lebih dalam mengenai perbedaan komputasi tunggal (menggunakan 1 processor) dengan komputasi paralel (menggunakan beberapa processor), maka kita harus mengetahui terlebih dahulu pengertian mengenai model dari komputasi.

Ada 4 model komputasi yang digunakan, yaitu:

·         SISD
Yang merupakan singkatan dari Single Instruction, Single Data adalah satu-satunya yang menggunakan arsitektur Von Neumann. Ini dikarenakan pada model ini hanya digunakan 1 processor saja. Oleh karena itu model ini bisa dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1.

·         SIMD
Yang merupakan singkatan dari Single Instruction, Multiple Data. SIMD menggunakan banyak processor dengan instruksi yang sama, namun setiap processor mengolah data yang berbeda. Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU).

·         MISD
Yang merupakan singkatan dari Multiple Instruction, Single Data. MISD menggunakan banyak processor dengan setiap processor menggunakan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD. Untuk contoh, kita bisa menggunakan kasus yang sama pada contoh model SIMD namun cara penyelesaian yang berbeda. Pada MISD jika pada komputer pertama, kedua, ketiga, keempat dan kelima sama-sama mengolah data dari urutan 1-100, namun algoritma yang digunakan untuk teknik pencariannya berbeda di setiap processor. Sampai saat ini belum ada komputer yang menggunakan model MISD.

·         MIMD
Yang merupakan singkatan dari Multiple Instruction, Multiple Data. MIMD menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda. Namun banyak komputer yang menggunakan model MIMD juga memasukkan komponen untuk model SIMD. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.

Perbedaan antara Komputasi Tunggal dengan Komputasi Paralel

Singkatnya untuk perbedaan antara komputasi tunggal dengan komputasi paralel, bisa digambarkan pada gambar di bawah ini:


Penyelesaian Sebuah Masalah pada Komputasi Tunggal


Penyelesaian Sebuah Masalah pada Komputasi Paralel

Dari perbedaan kedua gambar di atas, kita dapat menyimpulkan bahwa kinerja komputasi paralel lebih efektif dan dapat menghemat waktu untuk pemrosesan data yang banyak daripada komputasi tunggal.
Dari penjelasan-penjelasan di atas, kita bisa mendapatkan jawaban mengapa dan kapan kita perlu menggunakan komputasi paralel. Jawabannya adalah karena komputasi paralel jauh lebih menghemat waktu dan sangat efektif ketika kita harus mengolah data dalam jumlah yang besar. Namun keefektifan akan hilang ketika kita hanya mengolah data dalam jumlah yang kecil, karena data dengan jumlah kecil atau sedikit lebih efektif jika kita menggunakan komputasi tunggal.

Hubungan antara Komputasi Modern dengan Paralel Processing

Hubungan antara komputasi modern dan parallel processing sangat berkaitan, karena penggunaan komputer saat ini atau komputasi dianggap lebih cepat dibandingkan dengan penyelesaian masalah secara manual. Dengan begitu peningkatan kinerja atau proses komputasi semakin diterapkan, dan salah satu caranya adalah dengan meningkatkan kecepatan perangkat keras. Dimana komponen utama dalam perangkat keras komputer adalah processor. Sedangkan parallel processing adalah penggunaan beberapa processor (multiprocessor atau arsitektur komputer dengan banyak processor) agar kinerja computer semakin cepat.
Kinerja komputasi dengan menggunakan paralel processing itu menggunakan dan memanfaatkan beberapa komputer atau CPU untuk menemukan suatu pemecahan masalah dari masalah yang ada. Sehingga dapat diselesaikan dengan cepat daripada menggunakan satu komputer saja. Komputasi dengan paralel processing akan menggabungkan beberapa CPU, dan membagi-bagi tugas untuk masing-masing CPU tersebut. Jadi, satu masalah terbagi-bagi penyelesaiannya. Tetapi ini untuk masalah yang besar saja, komputasi yang masalah kecil, lebih murah menggunakan satu CPU saja.
Paralel prosessing komputasi adalah proses atau pekerjaan komputasi di komputer dengan memakai suatu bahasa pemrograman yang dijalankan secara paralel pada saat bersamaan. Secara umum komputasi paralel diperlukan untuk meningkatkan kecepatan komputasi bila dibandingkan dengan pemakaian komputasi pada komputer tunggal.
Penggunaan komputasi parallel prosessing merupakan pilihan yang cukup handal untuk saat ini untuk pengolahan data yang besar dan banyak, hal ini apabila dibandingkan dengan membeli suatu super komputer yang harganya sangat mahal maka penggunaan komputasi parallel prosessing merupakan pilihan yang sangat tepat untuk pengolahan data tersebut. Aspek keamanan merupakan suatu aspek penting dalam sistem parallel prosessing komputasi ini, karena didalam sistem akan banyak berkaitan dengan akses data, hak pengguna, keamanan data, keamanan jaringan terhadap peyerangan sesorang atau bahkan virus sehingga akan menghambat kinerja dari sistem komputasi ini.
Parallel komputasi adalah melakukan perhitungan komputasi dengan menggunakan 2 atau lebih CPU/Processor dalam suatu komputer yang sama atau komputer yang berbeda dimana dalam hal ini setiap instruksi dibagi kedalam beberapa instruksi kemudian dikirim ke processor yang terlibat komputasi dan dilakukan secara bersamaan. Untuk proses pembagian proses komputasi tersebut dilakukan oleh suatu software yang betugas untuk mengatur komputasi dalam hal makalah ini akan digunakan Message Parsing Interface (MPI).

Komentar mengenai Artikel diatas

        Artikel diatas merupakan artikel yang membahas tentang komputasi dan parallel processing. Pada artikel diatas telah dijelaskan bahwa Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer independen secara bersamaan. Dari pembahasan artikel diatas pembaca dapat mengetahui apa yang dimaksud dengan komputasi paralel, pemrograman paralel, perbedaan dari penggunaan komputasi paralel dibanding dengan komputasi tunggal.
        Pada artikel ini dibahas pula penjelasan dari model-model komputasi, diantaranya adalah SISD, SIMD, MISD dan MIMD. Pembahasan tentang perbedaan pada masing-masing model komputasi dan contohnya. Selain itu artikel ini juga menjelaskan hubungan dari komputasi modern dengan parallel processing.
        Artikel ini juga memberikan gambaran penjelasan tentang perbedaan komputasi paralel denan komputasi tunggal, dimana kinerja dari komputasi paralel lebih efektif dan menghemat waktu untuk pemrosesan data yang banyak daripada komputasi tunggal. Artikel ini juga menjelaskan mengapa dan kapan kita perlu menggunakan komputasi paralel. Karena penggunaan komputasi paralel hanya akan lebih efektif ketika kita mengolah data dalam jumlah yang besar.
        Dengan kelebihan yang dimiliki artikel diatas, menjelaskan bahwa pada artikel diatas dapat memberikan informasi yang cukup jelas kepada pembacanya. Selain itu terdapat sumber referensi dari pembuatan artikel diatas yang cukup jelas.
        Namun meski demikian, terdapat kekurangan pada artikel diatas dimana artikel tersebut kurang memberikan pembahasan tentang parallel processing dan langsung membahas tentang komputasi paralel.

Sumber :

Komentar

Postingan Populer